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The superconductor-insulator transition in the presence of strong compensation of dopants was recently
realized in La doped yttrium barium copper oxide. The compensation of acceptors by donors makes it possible
to change independently the concentration of holes n and the total concentration of charged impurities N. We
propose a theory of the superconductor-insulator phase diagram in the �N ,n� plane. It exhibits interesting
features in the case of strong coupling superconductivity, where Cooper pairs are compact nonoverlapping
bosons. For compact Cooper pairs the transition occurs at a significantly higher density than in the case of
spatially overlapping pairs. We establish the superconductor-insulator phase diagram by studying how the
potential of randomly positioned charged impurities is screened by holes or by strongly bound Cooper pairs,
both in isotropic and layered superconductors. In the resulting self-consistent potential the carriers are either
delocalized or localized, which corresponds to the superconducting or insulating phase, respectively.
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I. INTRODUCTION

The superconductor-insulator �SI� transition remains a
challenging and controversial subject after more than two
decades.1–13 In the low temperature limit one can drive the SI
transition by changing the film thickness, the magnetic field,
or the concentration of electrons in gated devices. In high Tc
superconductors such as yttrium barium copper oxide
�YBCO� one can tune the concentration of holes by changing
the oxygen doping. This leads to a SI transition at small hole
concentrations of about 6% per Cu site in the CuO plane.
From this perspective, YBCO is essentially a heavily doped
semiconductor. It is well known that upon decreasing the
doping a semiconductor undergoes the metal-insulator tran-
sition when the three-dimensional �3D� concentration of dop-
ants N crosses the threshold Na3�0.02. Here a=�2� /me2 is
the effective Bohr radius, � is the dielectric constant, m is the
effective mass, and e is the proton charge. In underdoped
high Tc superconductors the conducting phase is a supercon-
ductor, and one expects a superconductor-insulator transition
at a similar threshold concentration of dopants.

In semiconductors one can vary the concentration of car-
riers and impurities independently using compensation. For
example, in a p-type semiconductor doped with NA monova-
lent donors compensation means addition of a concentration
ND�NA of donors, so that the concentration of remaining
holes n=NA−ND becomes much smaller than the total con-
centration of charged impurities N=NA+ND. The metal-
insulator transition in the �N ,n� plane of a compensated
semiconductor was studied long ago. It was shown14,15 that
in heavily doped samples with Na3�1 the transition takes
place when n�N��N / �Na3�1/3, as was later verified by ex-
periments �cf., Fig. 13.3 in Ref. 15�.

Recently16 it was demonstrated that YBCO crystals can
also be strongly compensated by doping with La. Although
many of the La3+ ions substitute for Y3+ and are therefore not
electrically active, some La3+ ions substitute for Ba2+ and
hence play the role of monovalent donors compensating oxy-

gen acceptors. It was shown that the sample of
Y1−zLaz�Ba1−xLax�2Cu3Oy with x=0.13 and z=0.62 is com-
pletely compensated at y=6.32 and becomes n type at y
�6.32. Thus, also in high Tc superconductors the concentra-
tion of impurities and holes can be varied independently.
Resistance measurements16 showed that the SI transition
point nontrivially depends on both x and y. In strongly com-
pensated samples it occurs at much larger concentration of
holes than in standard uncompensated samples. However, the
full phase diagram of the zero-temperature SI transition in
the plane �N ,n� has not been established yet experimentally.
In this paper we predict it theoretically.

A. Global phase diagram

Let us start by discussing the gross features of the phase
diagram which are expected, e.g., in compensated high Tc
materials such as La doped YBCO �see Fig. 1�. In the un-
compensated material with n=N, we expect a transition from
the insulator to a superconductor at a critical doping nu �on
the underdoped side� as discussed above. The pairing mecha-
nism is believed to be at least in part due to spin fluctuations
which become significantly weaker upon exceeding an opti-
mal doping level. Finally, superconductivity is essentially de-
stroyed on the overdoped side �n�no� or at least Tc is
strongly suppressed. Upon adding the temperature axis to the
phase diagram this leads to the well-known superconducting
dome in high temperature superconductors. As disorder is
increased by compensation �increasing N /n�, the doping con-
centration nu�N�, where delocalized states first appear, in-
creases as well. On the other hand, we expect that the upper
critical density no�N� decreases because usually disorder di-
minishes the effectiveness of the superconductive attraction,
while it enhances the competing Coulomb repulsion. We thus
propose that at some compensation N /n=N� /n where
nu�N��=no�N��=n�, there may exist a tricritical point beyond
which a direct transition from a localized insulator to a metal

PHYSICAL REVIEW B 79, 134504 �2009�

1098-0121/2009/79�13�/134504�12� ©2009 The American Physical Society134504-1

http://dx.doi.org/10.1103/PhysRevB.79.134504


without intermediate superconducting state takes place. Note
that the effect of compensation is similar to that of a strong
magnetic field: both suppress superconductivity.

In this paper we are not concerned with the transition to a
metal at high doping nor with the vicinity of the tentative
tricritical point T= �nu�N�� ,N�� in Fig. 1, where metal, insu-
lator, and superconductor meet. Instead we analyze the de-
pendence of nu on the degree of compensation. In the case of
strong coupling superconductivity the latter exhibits interest-
ing features in the regime of low densities, reflecting the
crossover from a Bose-Einstein condensation �BEC� to a
Bardeen-Cooper-Schrieffer �BCS� superconductor in the in-
teracting gas of preformed Cooper pairs.

B. BEC-to-BCS crossover in the SI transition

A first attempt to predict the low density part of the SI-
phase diagram17 was based on the toy model of an isotropic
compensated p-type semiconductor with a strong �unspeci-
fied� pair-forming mechanism. The size of hole pairs � was
taken as a free parameter as determined by a strong coupling
mechanism. For the major part of this paper we will adopt
this approach as well. For simplicity we assume � to be in-
dependent of the density of carriers and the disorder, at least
in the dilute BEC part of the phase diagram. However, it
would not be difficult to account for such a dependence �in
certain strong coupling models for preformed pairs one ex-
pects such a dependence even in the dilute regime12�. In the
following we thus concentrate on the two independent vari-
ables n and N, taking � as a fixed parameter.

In Ref. 17 two limiting cases of the SI transition were
identified: in the limit of large pairs which overlap signifi-
cantly in space, n�3�1, one obtains the standard BCS insta-
bility of the fermion system. If disorder is weak the electrons
are delocalized and form a dirty BCS superconductor. This
happens essentially at the same critical density as the metal-

insulator transition in a semiconductor14,15 without supercon-
ductivity,

n = n1�N� =
N

�Na3�1/3 . �1�

Note that there is no dependence on � in Eq. �1� because
electrons are only weakly bound and, therefore, screen the
random potential of charged impurities like free ones. Here
and in all formulas below we omit numerical coefficients and
adopt the scaling approach. The scaling is controlled by the
large dimensionless parameter Na3�1 and the dimensionless
ratio a /�.

The opposite limit of very small and strongly bound pairs
is more unusual. Upon decreasing the concentration of holes
n the SI transition occurs due to the localization of hole pairs
�composite bosons� in a random potential.1 At small external
disorder the bosons undergo a BEC while at large disorder
the condensate is fragmented and turns into a Bose insulator
�also referred to as Bose glass�. This limit is reached when
the pairs are dilute, n�3�1, and can be considered as a gas
of pointlike charged bosons. A similar picture applies to the
case of neutral bosons.18,19

As we will rederive below, for pointlike bosons the border
between the superconducting BEC phase and the Bose insu-
lator occurs at the hole density,

n = n3�N� =
N

�Na3�1/5 , �2�

where typical screened Coulomb wells loose their bound
quantum levels. Of course, the length � is again irrelevant
because the pairs are considered as pointlike bosons. Notice
that for a heavily doped system with Na3�1, we have
n3�N��n1�N�. In other words, in a given disorder, a system
of small pairs delocalizes at a much higher density n than a
system of weakly bound electrons with larger pair size �.
This reflects the fact that, at equal density n, bosons have less
kinetic energy, and thus one needs more of them to induce
their collective delocalization.

The crossover between the above two limiting cases is
quite subtle. In Ref. 17 it was incorrectly assumed that the
limits described by n1�N� and n3�N� require only the in-
equalities n�3�1 or n�3�1 to be valid and hold all the way
up to the BEC-BCS crossover line n�3=1. However, this
argument neglected the repulsion between bosons as they
become denser, and thus it lead to the incorrect conclusion
that the BEC-BCS crossover line forms a substantial part of
the SI transition line. Below we reconsider this crossover in
detail.

This paper contains two main results. First, in Sec. II we
show that while n1�N� is valid all the way up to the BEC-
BCS crossover line n�3=1, the BEC part of the SI transition
is to a large extent dominated by an intermediate segment
n=n2�N� of the transition line at which the chemical poten-
tial of repulsive compact bosons becomes of the order of the
amplitude of the screened Coulomb potential. This segment
interpolates between the above discussed limits n1�N� and
n3�N� �see Fig. 2�. We will see that the BEC regime, n2�N�
and n3�N�, occurs only when the pairs are smaller than the
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FIG. 1. �Color online� Global phase diagram of compensated
high Tc superconductors in the plane �n ,N�. Here M, S, and I stand
for metal, superconductor and insulator, respectively. The line nu�N�
separates the insulator form a superconductor, which eventually
turns into a metal upon overdoping beyond no�N�. We conjecture
the existence of a tricritical point T= �nu�N�� ,N��, where nu�N��
=no�N�� beyond which the insulator turns directly into a metal. A
large part of the paper is focused on the lower left corner of the line
nu�N� which exhibits features of the BEC-to-BCS crossover of the
interacting gas of Cooper pairs in strong coupling superconductors.
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effective Bohr radius, ��a. We show below that in this case
transport in the insulating phase is due to the hopping of hole
pairs. In the Appendix we will discuss bipolarons as an ex-
ample of strong coupling superconductivity which can give
rise to such small pairs.

Second, in Sec. III we apply similar ideas to a generic
strongly anisotropic superconductors with a layered struc-
ture, such as formed by the CuO or FeAs planes in high Tc
superconductors. We arrive at a qualitatively similar phase
diagram in the plane �N ,n� for this case as well �see Fig. 4�.
The details of the phase diagram are found to depend on the
ratio between Bohr radius and interlayer distance.

II. SI PHASE DIAGRAM OF AN ISOTROPIC
SUPERCONDUCTOR

Let us now recall the derivation of the limiting critical
concentrations n1�N� and n3�N�. We consider the case of
heavily doped materials, Na3�1, which provides a large pa-
rameter that makes the scaling analysis well controlled.

A. BCS segment of the superconductor-insulator
transition line

We start from the BCS side at high density �large pairs�.
Let us divide the sample into cubes of linear size R. Due to
spatial fluctuations of the concentrations of donors and ac-
ceptors each cube contains a random impurity charge of ar-
bitrary sign and with an absolute value of the order of
e�NR3�1/2. At the scale R such randomly fluctuating charges
create a random potential energy relief of amplitude,

eV�R� �
e2�NR3�1/2

�R
=

e2�NR�1/2

�
. �3�

This energy diverges at large R, so that screening even by a
small concentration of holes n is crucial. To discuss this
screening we estimate the characteristic fluctuating density
�N�R� of impurity charges at the scale R,

�N�R� =
�NR3�1/2

R3 = � N

R3�1/2
. �4�

The concentration n of carriers can be redistributed between
wells and hills of the random potential. This redistribution
screens all the scales R for which �N�R�	n or, in other
words, for R
Rs, where

Rs = � N

n2�1/3
�5�

is the nonlinear screening radius.14,15 All scales R�Rs re-
main unscreened because even when all electrons are trans-
ferred from all the hills of the potential energy to all its wells
they are not able to level off the charge density of such
fluctuations. Since V�R��R1/2 among remaining scales the
most important contribution to the random potential is given
by R=Rs. Thus, the amplitude of the nonlinearly screened
random potential energy is

eV�Rs� =
e2

�

N2/3

n1/3 . �6�

So far we have dealt only with the electrostatic energy of
holes and neglected their kinetic energy. At T=0 all kinetic
energy is of quantum origin, and we should find the condi-
tions under which it is small enough so that the above de-
scribed picture of localized electrons is valid. Clearly the
potential energy 	Eq. �6�
 is able to localize electrons with
concentration n if it is larger than the Fermi energy of holes
in its wells �F�n�=�2n2/3 /2m �m being the effective mass�. In
the opposite case �F�n��eV�Rs� the Fermi sea covers the
typical maxima of the potential energy relief and the semi-
conductor behaves like a good conductor �see Fig. 3�. Equat-
ing eV�Rs� and �F�n� we obtain the critical concentration
n1�N� for the SI transition, as given by Eq. �1�.14,15 Note that
the nonlinear screening theory requires nRs

3=N /n�1 which
is always fulfilled in strongly compensated materials.

In the delocalized phase electron screening becomes lin-
ear, the screening radius being given by the standard
Thomas-Fermi expression,

n
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FIG. 2. �Color online� SI-phase diagram in an isotropic 3D sys-
tem on a log-log plot �S stands for superconductor and I for insu-
lator�. The dilute boson part of the curve �C-B� is described by n3

	Eq. �2�
, the interacting boson part �B-A� by n2 	Eq. �19�
, and the
standard strong coupling BCS transition beyond A by n1 	Eq. �1�
.
The BEC part of the transition line �C-A� only exists if the pairs are
very small, ��a. In the case of larger pairs ���a� and for weak
coupling in general, the n1 line extends all the way to the point C.
The shaded region corresponds to n�N which is unphysical.

FIG. 3. Top: droplets in the insulator. The carriers assemble in
nonpercolating fragments of size Rq�Rs. Bottom: in the conductor,
the wells are not deep enough to localize the carriers. The latter
delocalize due to their quantum kinetic energy, 
�V�rs� �
=EF in
the BCS limit of dense pairs�.
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rs = � 1

e2

d


dn
�1/2

=
a

�na3�1/6 , �7�

and the amplitude of the screened potential relief equals
eV�rs�=e2�Nrs�1/2 /�. As expected, at the transition n=n1,
these two quantities match the corresponding expressions
	Eqs. �5� and �6�
 pertaining to the insulating side.

B. BEC segments of the superconductor-insulator transition
line

In the above discussion the notion of strong pairing attrac-
tion and preformed pairs was irrelevant. However, as we
follow the transition line 	Eq. �1�
 to lower densities, we may
finally reach the crossover to the BEC regime, which takes
place when strongly bound hole pairs become dilute, i.e.,
when n1�3= �Na3�2/3�� /a�3=1. This corresponds to point A in
Fig. 2 and the densities

nA
�3d�a3 = �a/��3, �8�

NA
�3d�a3 = �a/��9/2. �9�

Under the assumption of heavy doping, Na3�1, the
crossover to the BEC regime can only happen when the pair
size is much smaller than the Bohr radius, ��a�Na3�−2/9

�a. For the sequel we will assume that the pairs are very
small ��a. Since we will be using the concept of strongly
bound pairs a lot, we briefly recall the essential elements of
strong coupling superconductivity.

1. Strong coupling superconductivity

The physics of a fermion gas subject to attractive interac-
tions �but in the absence of disorder� has been studied in
detail in Refs. 20–22 and is now a very active field of study
in the context of cold atoms.23 Nozières and Schmitt-Rink22

considered electrons with a mutually attractive potential of
size Vk,k��V for k	k0 and rapidly decaying for larger k. If
the interaction potential between two holes is too weak to
produce a bound state �V�Vc�1 /mk0�, the fermions are
essentially unbound, and only an exponentially narrow range
of energies around the Fermi level participates in pairing, the
gap being of the order of

� �
4kF

2

m
exp	− 1/��EF�VkF,kF


 , �10�

where ��EF� is the density of states at the Fermi level. On the
other hand, if the mutual interaction is strong, bound states
of two single carriers exist, and at low density the fermions
organize into preformed pairs with a typical size �
�	�V /Vc−1�k0
−1 and a pairing energy Epair��2 /m�2. As
long as the pairs are dilute, n�3�1, the chemical potential
for the addition of pairs 
 and the gap function � are much
smaller than the pairing energy,


 � Epair�n�3� �
�2

m
n� , �11�

� � Epair�n�3�1/2. �12�

However, when the pairs become dense, the pair chemical
potential is dominated by the Fermi energy of its constituting
fermions,


 � EF =
�2n2/3

m
. �13�

At the same time the gap function � crosses over to its
strong coupling BCS form, i.e., Eq. �10� with an exponent of
order24 O�1�,

� � EF. �14�

In this dense regime the pairing energy is dominated by the
gap function Epair����2 /m�2.

2. Very dilute bosons

In order to derive the critical concentration n3�N� of Coo-
per pairs �charge 2e bosons� at the SI transition, we notice
that the above calculation of the nonlinear screening radius
Rs 	Eq. �5�
 and the random potential energy created by
screened charged impurities 	Eq. �6�
 remains unaltered in
the scaling sense.

The difference between the gas of composite bosons and
that of weakly bound fermions lies in their quantum kinetic
energy.17 Due to the weak effect of Pauli’s principle on
strongly bound Cooper pairs, a large number of them can
occupy a given localized level of a potential well, keeping
the quantum kinetic energy low. Therefore, the condition of
delocalization of Cooper pairs is much more stringent than
the condition eV�Rs���F�n� which applies to fermions. A
sufficient condition for the delocalization of a compact Coo-
per pair is that a typical well of the random potential does
not contain any localized level or eV�Rs���2 /mRs

2, where m
is the effective mass of pairs, which we assume to be of the
same order as that of electrons. This condition is also neces-
sary if mutual repulsions can be neglected, as we will discuss
below. Solving the equation

eV�Rs� =
�2

mRs
2 , �15�

for n and using Eqs. �5� and �6�, we find the critical concen-
tration of the SI transition given in Eq. �2�. This derivation
clearly demonstrates why n3�N��n1�N�. According to Eq.
�6� the potential energy amplitude eV�Rs� decreases with in-
creasing n. To achieve delocalization it has to be pushed
below the quantum kinetic energy of the clean system. This
requires larger n in the boson case and thus leads to n3�N�
�n1�N�.

3. Moderately dilute interacting bosons

So far, following Ref. 17, we have taken into account all
the Coulomb interactions. However, we have neglected the
short range repulsive interaction between composite bosons.
Such a repulsion is related to the Fermi nature of individual
holes, which becomes important if two pairs of holes overlap
within their length �. This short range interaction can be
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described by the well-known expression for the chemical po-
tential 
�n� of a nonideal gas of bosons of concentration n
with a scattering length �,


 = ��2/m�n� , �16�

which is also confirmed by result �11� for dilute systems of
strong coupling superconductivity. This chemical potential
reflects the extra quantum kinetic energy due to the mutual
repulsion of the pairs. Note that it matches the Fermi energy
EF=�2n2/3 /m when the BEC-BCS crossover n�3=1 is
reached.

Delocalization criterion �15� discussed above remains rel-
evant as long as the density is low enough such that 
 is
smaller than the typical localization energy �2 /mRs

2. How-
ever, at an impurity density N=NB, the chemical potential of
the critical insulator 	n=n3�N�
 becomes of the order of the
typical amplitude of the random Coulomb potential 	Eq. �6�
.
This marks point B in Fig. 2, beyond which the delocaliza-
tion is driven by the mutual repulsion between bosons. The
crossover in the transition line occurs at the densities

nB
�3d�a3 = �a/��2, �17�

NB
�3d�a3 = �a/��5/2. �18�

On the low density side the n3�N� line ends at point C which
corresponds to the uncompensated limit n3a3=Na3=1. At
higher densities, N�NB we need to compare the quantum
kinetic energy 	Eq. �16�
 to the amplitude of potential fluc-
tuations 	Eq. �6�
, similarly as in the BCS regime. This leads
to the segment of the transition line,

n = n2�N� =
N1/2

�a��3/4 , �19�

which interpolates between points A and B in Fig. 2.
We can confirm this result by calculating the linear

screening radius rs in the delocalized Bose gas. Using Eq.
�16� to compute the compressibility we find the Thomas-
Fermi screening radius from Eq. �7� as rs= �a��1/2. One easily
verifies that this linear screening radius matches the nonlin-
ear screening radius �5� at the transition line �19�. Similarly,
one can check that along the line n1 the linear screening
radius of the conducting side matches the nonlinear screen-
ing radius Rs on the insulating side. The linear screening in
the very dilute superfluid above the line n3 is found17 to be

rs = �a

n
�1/4

, �20�

which again matches Rs at the transition line n3.
The fact that the SI transition line undergoes a kink at the

BCS-BEC crossover is very similar to the case of the
superfluid-insulator phase transition in a neutral gas of at-
tractive fermions.18 However, at lower density n2 lies below
the BCS-BEC crossover line, contrary to what was claimed
in Ref. 17.

The results obtained so far in this section can be summa-
rized in the following concise manner: the chemical potential
of a gas of composite bosons of size �, localized into a region
of linear size R, is given by


�n,R� = max� �2

mR2 ,
�2

m
n min��,n−1/3�
 . �21�

The first term of the right-hand side refers to the ground-state
energy in a well of size R. At higher density 
�n ,R� is domi-
nated by the second one, describing the interaction energy
�16� of repulsive bosons �for n�3�1� and the Fermi energy
EF�n2/3 of the BCS regime �for n�3�1�, respectively.

The SI transition occurs when the chemical potential
dominates over the amplitude of the screened impurity po-
tential, i.e., when


�n,Rs� � eV�Rs� . �22�

This can be reformulated as

max�� n

n3�N�
�5/3

,
n

n1�N�
min	1,�n�3�1/3

 = 1, �23�

which defines the transition line in the whole �n ,N� plane, as
plotted in Fig. 2.

C. Nature of the insulating regime

1. Droplets in the insulator

It is important to understand the insulating phase in some
more detail. Deep in the insulator, the charge density n is by
no means homogeneously distributed. Instead the holes or
Cooper pairs fill deep wells, where they form puddles of high
density, while the rest of the space is completely void of
carriers. To determine the chemical potential and the size of
puddles we can argue as follows: when n�n�N� only the
deep wells of the landscape are populated with carriers �see
Fig. 3�.

Suppose the carriers fill a well of linear size R�Rs. Its
typical depth eV�R� is given by Eq. �3�, and it contains an
excess impurity charge of order eQ�R�=e�NR3�1/2. Upon fill-
ing the well with carriers, their chemical potential raises con-
tinuously with respect to the bottom of the well. Assume that
when the chemical potential reaches eV�R� we have filled in
Qq�R� particles. If R is small, Qq�R��Q�R�, that is, the ex-
clusion principle or the repulsion between bosons limits the
number of carriers we can fill into the well. In large wells,
we can at most fill in Q�R� particles before turning the well
into a hump. However, those larger wells will not be filled
homogeneously with particles. Rather, they split into smaller
droplets for which Qq�R��Q�R�. The latter relation defines15

a typical droplet size Rq,


�n = nq �
Q�Rq�

Rq
3 � = eV�Rq� . �24�

Here we have to use the expressions for the chemical poten-
tial given above in Eq. �21�.

Analyzing the three regimes of the phase diagram �BCS
side, repulsive bosons, and very dilute bosons� we find the
following results. When n�3�1 �N�NA

�3d� on the transition
line�, 
 is given by EF�n�, and we find the droplet size15
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Rq,1 =
a

�a3N�1/9 . �25�

In the repulsive boson regime, �N�3�2�n�3�1 �or NB
�3d�

�N�NA
�3d� on the transition line�, we find instead

Rq,2 = �a��1/2. �26�

Eventually, in the lowest density regime, n�3� �N�3�2,
where the bosons do not significantly interact, Rq is simply
the typical localization radius in the disorder potential. It is
obtained from �2 /mR2�eV�R� as

Rq,3 =
a

�a3N�1/5 . �27�

In all three cases, the insulator consists mostly of puddles
of size Rq which are well separated and do not percolate. One
can verify that the SI transition occurs when the droplets
grow to the size of the nonlinear screening radius, Rq=Rs
= �N /n2�1/3. Indeed, at this point droplets of size Rs start to
percolate, which induces the delocalization transition.

Note the remarkable fact that in all insulating regimes the
density of carriers in the above droplets is the same as the
critical density of the corresponding segment of the SI tran-
sition, nq=Q�Rq� /Rq

3=n�N�.

2. Level spacing in droplets

Before we turn to the role which droplets play in the
transport properties of the insulator phase, we have to dis-
cuss the level spacing in a typical droplet. The typical cost to
add another carrier into a droplet is �=Rq

−3d
 /dn�n=nq�.
This is essentially the level spacing of the considered drop-
let. Interestingly this quantity turns out to be equal to the
charging energy e2 /Rq. This holds both in the dense BCS-
like part and in the interacting boson regime of the phase
diagram. In the very dilute boson regime, the quantity of
interest is not the level spacing � but the typical kinetic en-
ergy scale of a localized wave function, which again turns
out to be equal to the charging energy e2 /Rq. Thus, for the
above �spontaneously originating droplets� we do not have to
distinguish between one-electron level spacing and charging
energy.

This unique energy scale is important in determining
whether all carriers are paired or whether it is energetically
favorable to break up a pair and redistribute the constituting
holes onto two different droplets. The cost of such a break up
is the pairing energy, while the maximal energy gain is of
order ��e2 /Rq. Thus the criterion for having all carriers
paired up in the ground state is

� � e2/Rq � Epair. �28�

In the BEC regime the pairing energy is given by Epair
��2 /m�2. In the BCS regime it is even bigger if the BCS
coupling remains strong 	see Eq. �14�
. Thus, if ��a, it is
never favorable to break Cooper pairs, i.e., the insulating
state is always a Bose glass. Moreover the droplets are actu-
ally superconducting at low enough temperatures. In tunnel-
ing experiments they should show a hard gap with coherence
peaks on its shoulders despite the absence of global phase
coherence among the droplets.

D. Variable range hopping transport in the insulator

The above implies that for systems with small pairs, �
�a, the low temperature transport is Efros-Shklovskii vari-
able range hopping of Cooper pairs between droplets. This
yields a conductivity

��T� = �0 exp�− �TES

T
�1/2
 , �29�

with a characteristic temperature

TES = 2.8
�2e�2

��2
, �30�

where �2 is the effective localization length of a Cooper pair.
This prediction agrees qualitatively with experimental
data.16,25

However, there is an exception to the above assertion that
pairs prevail in the insulator if ��a. Namely, if the dimen-
sionless BCS coupling � decreases with increasing density in
the BCS regime, the pairing energy Epair can become expo-
nentially suppressed at high densities. �This presumably hap-
pens on the overdoped side of high Tc superconductors.�

When Epair�� falls below the level spacing in typical
droplets, �, it becomes favorable to break up pairs and redis-
tribute the carriers on different droplets. One can verify that
at the same time the parity gap �the extra cost for having an
odd number of particles per droplet� becomes smaller than
the level spacing.26 In this situation the ground state of the
system is a Coulomb glass of unpaired fermions. Conse-
quently, the low temperature transport is again of form �29�
but with a characteristic temperature,

TES = 2.8
e2

��1
, �31�

which is roughly eight times smaller than Eq. �30�, because
the localization length of a hole is about twice as big as that
of a pair, �1�2�2. When pairs are not very strongly bound
���a�, as well as in the case of weak coupling, only the
BCS segment of the superconductor-insulator border sur-
vives. In the weak coupling case, it can easily happen that
Epair�� in the droplets of the insulator. In this case they
contain odd or even numbers of holes, and the low tempera-
ture variable range hopping is dominated by unpaired holes.

So far we have not specified any particular strong cou-
pling mechanism which leads to the preformed pairs on the
insulating side of the SI transition. In the Appendix we dis-
cuss an explicit example of strong coupling superconductiv-
ity, which allows one to formulate a direct microscopic cri-
terion for the condition ��a. As discussed above, the latter
is necessary to observe the BEC part of the SI transition in a
heavily doped system.

E. Coulomb correlation energy

As we saw above the long range Coulomb interactions
considered within mean field approximation play a major
role in our theory. However, the correlation energy produced
by the Coulomb interaction between nearest neighbors has
been neglected so far. We should thus make sure that correc-
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tions to the chemical potential due to Coulomb correlations
are subdominant with respect to the leading term given in
Eq. �21�. According to Foldy27 the energy per particle in a
disorder-free Coulomb interacting Bose system in 3d is

uCb =
e2

a
�s

−3/4 =
�2

m
n2/3�s

5/8 =
�2

m
n1/4a−5/4, �32�

where �s= �a3n�−1/3. One can verify that this quantity is in-
deed smaller than 
�n ,Rs�, along the whole SI-phase transi-
tion line, consisting of the segments n1�N�, n2�N�, and n3�N�.

III. SI PHASE DIAGRAM OF A LAYERED
SUPERCONDUCTOR

A. General theory

1. Nonlinear screening in a layered system

In this section, we extend our previous arguments to the
case of anisotropic layered superconductors. We assume that
with respect to the motion along the c axis �z axis� all holes
reside in the lowest spatial quantization mode of the narrow
quantum wells defining the conducting ab planes �x ,y plane�
perpendicular to the c axis. These parallel wells are located
at a distance d from each other, each well containing holes
with the two-dimensional �2D� concentration nd. Impurities
of both signs are randomly distributed between these narrow
quantum wells. We assume again that a strong attraction be-
tween the holes of a given well leads to preformed pairs
�composite bosons� with a size � in the plane of the well. To
simplify things we will first assume an isotropic dielectric
constant �. Modifications due to anisotropy will be discussed
in Sec. III A 2.

Let us define again the effective Bohr radius in the ab
plane, a=�2� /me2. For the insulating phase we need to un-
derstand the nonlinear screening in a system containing im-
purities in the bulk and screening carriers confined to planes.
There are two limits of this screening problem. When the
nonlinear screening radius is bigger than the distance be-
tween layers, Rs�d, we can use our results for the isotropic
3d case 	cf. Eqs. �5� and �6�
. On the other hand if d�Rs, the
potential fluctuations within each plane are screened inde-
pendently. For these two cases we have obtained the phase
diagrams of Fig. 4. The specific expressions for the various
lines are derived below.

The nonlinear screening radius for the case d�Rs has
been derived in Refs. 28 and 29. Let us cover a conducting
plane by densely packed cubes of linear size R�d. Fluctua-
tions of the charge among these cubes are of the order of
e�NR3�1/2. The random potential they create in the planes can
be screened by redistributing the charge of two-dimensional
holes endR2 between potential hills and wells of linear size
R, if the latter is large enough. We find the nonlinear screen-
ing radius Rs by equating e�NR3�1/2=endR2, which yields

Rs =
N

�nd�2 . �33�

Only scales of the random potential with R�Rs survive the
screening. Thus, the amplitude of the remaining random po-
tential is

eVs =
e2

�

N

nd
. �34�

At small enough hole concentration n the screening radius
is always bigger than d. However, upon approaching the SI
transition, either of the above screening scenarios may apply.
As we will see, the first case applies to small separations of
layers, d�a, while the screening of independent layers gov-
erns close to the SI transition if d�a.

2. Narrowly spaced layers, d�a

The difference between layered materials and isotropic
ones is due to the confinement of the carriers to the layers.
The quantum kinetic energy, or the chemical potential of
pairs confined to a region of linear size X in the plane, evalu-
ates to


�n,X� = max� �2

mX2 ,
�2

m

nd

max	1,log�1/�2nd�

 . �35�

Note that in 2d there is only a logarithmic difference be-
tween the Fermi energy EF in the fermion fluid and the in-
teraction energy per particle in the Bose gas, both scaling
essentially as ��2 /m�nd. The logarithmic dependence of 
 on
the pair size � in the interacting boson regime is well
known.30 Note that the logarithm is replaced by unity at the
BEC-BCS crossover point nd�2=1. The first term in Eq. �35�
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FIG. 4. �Color online� The superconductor-insulator transition in
the plane �n ,N� for the model of a layered high Tc superconductor
�on a log-log scale�. S stands for superconductor and I for insulator.
The shaded region n�N is unphysical. �a� Narrowly spaced layers,
d�a. At lowest densities the SI transition is a Mott transition in the
layers. The very dilute boson part of the curve �M-B� is described
by n5 	Eq. �37�
, while the interacting boson and BCS parts �B-A
and beyond� are described by n4 	Eq. �36�
. �b� Widely spaced
layers, d�a. The dilute boson regime does not exist. In both cases,
the point A where a weak BEC-BCS crossover takes place exists
only if �ad�1/2�� or a��.

COMPENSATION-DRIVEN SUPERCONDUCTOR-INSULATOR… PHYSICAL REVIEW B 79, 134504 �2009�

134504-7



is the kinetic energy of a single boson or fermion in a well of
size X, the relevant size in the context of nonlinear screening
being X=Rs.

We will show below that the logarithmic effects due to the
finite size of pairs � are only relevant for the transition when
the pairs are small, �� �ad�1/2. Let us thus first discuss the
opposite case �� �ad�1/2. The chemical potential for pairs
	Eq. �35�
 then scales in the same way as that for fermions
without any superconducting correlations. Thus the results
below describe equally well the metal-insulator transition of
unpaired fermions confined to planes.

Delocalization and hence the insulator-conductor transi-
tion take place roughly when 
�n ,Rs�=eVs. In the high den-
sity regime where the Fermi energy dominates, the transition
occurs at

n4 =
N1/2

�ad�3/4 . �36�

The difference between this result and Eq. �1� is due to
the confinement of holes to the ab planes. At low densities,
the random potential eVs competes against the kinetic energy
due to the confinement of carriers to regions of size Rs in the
plane. From this we find the critical density,

n5 =
N

�Na3�1/5 , �37�

which is the same as in the isotropic case 	Eq. �2�
.
Line �2� continues down to densities nM =1 /a2d which is

the minimal density required to drive a Mott transition in the
layers. Note that for d�a this minimal density is higher than
in the isotropic case since here the carriers are confined to
narrowly spaced planes.

The crossover between n4�N� and n5�N� occurs at the den-
sities

nB
�2d�a3 = �a

d
�2

, NB
�2d�a3 = �a

d
�5/2

. �38�

The transition lines n4 and n5 can also be derived by ap-
proaching from the conducting side, in close analogy to the
isotropic case.

It is justified to deal with fermions and thus to ignore the
logarithm in Eq. �35� if we are still on the BCS side of the
BCS-BEC crossover, i.e., if �2nd�1 down to n=nB

�2d�. This
condition is equivalent to �� �ad�1/2 as we anticipated above.
In this case, the crossover to the dilute boson �BEC� regime
occurs along the line n5 only, without affecting the shape of
the SI transition line.

Let us now discuss effects which arise if fermions bind
into small pairs of size �� �ad�1/2. As in the isotropic case,
there is a BCS-BEC crossover at the point A in the phase
diagram, where nA

�2d�=1 /�2d�nB
�2d� and

nA
�2d�a3 =

a3

�2d
, NA

�2d�a3 = �a

d
�1/2�a

�
�4

. �39�

However, here the difference between the fermion regime
and the interacting boson regime results only in a logarithmic
factor correcting the line n4 to

n4 =
N1/2

�ad�3/4 log3/4� �ad�3/4

�2dN1/2� . �40�

3. Widely spaced layers, d�a

If the spacing between layers is larger than the Bohr ra-
dius we need to compare the potential fluctuations 	Eq. �34�

to the chemical potential 	Eq. �35�
. As above, we will find
that when pairs are large, ��a, they do not affect the phase
transition line, which then becomes equivalent to the metal-
insulator transition of an unpaired fermion system. In the
high density regime, equating EF to eVs from Eq. �34�, we
find the transition line,

n4 =
N1/2

a1/2d
. �41�

The nonlinear screening radius remains constant Rs=a along
the SI transition line.

It turns out that, contrary to the case d�a discussed
above, line �41� describes the SI transition down to dopant
densities where NMa3=1 and n=nM =1 /a2d, while the first
term in Eq. �35� never becomes relevant. Once the dopants
are dilute, Na3�1, one leaves the regime of heavy doping.
The potential for individual carriers is then dominated by the
closest impurity charge. Under these conditions the delocal-
ization takes place as a standard Mott transition in the planes.
It occurs when the nearest-neighbor distance in the planes is
of order a, i.e., when

n = nM =
1

a2d
. �42�

Again, it is justified to deal with fermions and to neglect
logarithmic factors if �2nd�1 holds down to n=nM. This is
equivalent to the condition of large pairs, ��a.

However, in the case where fermions are strongly bound
into pairs of size ��a, there are logarithmic corrections to
the phase boundaries. One finds that line �41� turns slightly
upward,

n4 =
N1/2

a1/2d
log1/2� a1/2d

�2dN1/2� , �43�

for nM �n�nA
�2d�=1 /�2d. The full phase diagram is shown in

Fig. 4�b�.

B. Anisotropic dielectric constant

Here we refine the above analysis and take into account
the anisotropy of the dielectric constant in a layered system.
We use �z for �zz and �x for �xx=�yy. We also define the
average dielectric constant as �= ��x

2�z�1/3.
In order to derive the SI transition line in the presence of

an anisotropic dielectric constant we first switch to the coor-
dinate frame �x� ,y� ,z��, where x�=x /�x

1/2, y�=y /�x
1/2, and

z�=x /�z
1/2. In this frame31 the Coulomb interaction of a

charged impurity with a hole becomes isotropic e2 /�3/2r�. At
the same time, the concentrations N and n are transformed
too: N�=�3/2N, n�=�3/2n.
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Let us first treat the case of narrowly layered systems. In
this case we have similarly to Eqs. �5� and �6�, Rs�
=N�1/3 /n�2/3=N1/3 /�1/2n2/3 and eV�Rs��=e2N�2/3 /�3/2n�1/3

=e2N2/3 /�n1/3. Thus, returning to the laboratory system we
arrive back at Eq. �6� for the amplitude of the screened po-
tential eVs and to the same SI transition line �36� with rede-
fined �= ��x

2�z�1/3. However, note that the notion of the non-
linear screening radius Rs becomes anisotropic.
Characteristic potential wells have a scale Xs=�x

1/2Rs�
= �N1/3 /n2/3��1/6 in the �x ,y� plane, where �=�x /�z. On the
other hand, the scale perpendicular to the planes is Zs
=�z

1/2Rs�= �N1/3 /n2/3��−1/3=Xs�
−1/2�Xs. This anisotropy

modifies the critical concentration n5 �i.e., the very dilute
boson limit� to

n5 =
�1/5N

�Na3�1/5 . �44�

It also affects the criterion on the smallness of pairs that is
required for a BEC regime with logarithmic factors to exist.
The criterion follows from nB

�2d��2d�1, where nB
�2d� is the

crossing point of n4 and n5. This yields the requirement

� � �1/6�ad�1/2 �d � d�� . �45�

The crossover from widely to narrowly spaced layers can be
obtained from the criterion Zs=d. It occurs at the spacing

d = d� =
�z

�
a = �−2/3a . �46�

In the widely spaced case one finds

eVs =
e2

�3/2
N�

n�d�
=

e2

�3/2�z
1/2 N

nd
, �47�

and thus the corrected transition line

n4 = ��z

�
�1/4 N1/2

a1/2d
= �−1/6 N1/2

a1/2d
. �48�

The Mott transition at low density now takes place at a den-
sity

nM = nB
�2d� =

1

ax
2d

=
�1/3

a2d
, �49�

where ax=�−1/6a is the effective Bohr radius in the plane. It
is obtained by comparing kinetic and Coulomb energy in the
plane, �2 /max

2=e2 / 	�3/2ax�
=e2 / 	�3/2�ax /�x
1/2�
. Logarithmic

corrections occur in this case if nMd�2�1, i.e., for

� � a�−1/6 �d � d�� . �50�

Note that the critical lines n4 for narrowly and widely spaced
systems match when d=d�. The same holds for the critical
size of pairs necessary to have a BEC-like regime.

C. Is the BEC limit of this theory applicable to high Tc

superconductors?

Above we have obtained results along two lines. First, for
relatively large pairs �in the BCS regime� we predict the SI
transition line given by Eqs. �36� and �37�. Second, for small

pairs we have discussed an additional logarithmic factor
originating from BEC effects. One may question whether the
value of � in high Tc superconductors is small enough so that
the condition nd�2	1 for a BEC-like regime with extra
logarithmic factors is realistic. The most frequently cited
number for underdoped uncompensated YBCO for the super-
conducting coherence length is 2 nm. However, for the case
of strong coupling of holes the size of pairs, �, can be smaller
than the coherence length. Angle resolved photoemission
spectroscopy �ARPES� data in YBCO indicate that actually32

��1 nm. Using that the boundary of the superconducting
dome on the underdoped side occurs at �nud�=0.06a0

−2 where
a0�0.4 nm is the lattice constant of the two-dimensional Cu
lattice, one finds that the SI transition at T=0 empirically
happens when nd�2�0.4�1. This means that the BEC part
of our diagram Fig. 4 is marginally relevant. In iron-arsenide
superconductors the small value ��2 nm was recently
found.33 Since nuda0

2 has a similar value as in cuprates, this
leads to nud�2�1 in this family of superconductors as well.

The low density �BEC� regime might indeed be experi-
mentally relevant if one adopts a popular interpretation of the
pseudogap which is observed in underdoped samples.23,34–38

The latter assumes that the pseudogap is due to preformed
hole pairs with large binding energy �Epair�Tc�, the pairs
being localized by disorder at low doping density. If such an
interpretation is correct, the small N part of our diagram �Fig.
4� may be relevant for high Tc superconductors.

As we have seen the SI boundary reflects the BEC-BCS
crossover in the form of extra logarithmic factors in the criti-
cal density n4 only if � is sufficiently small, i.e., if condition
�45� or �50� is satisfied. Let us discuss this condition for the
example of Bi2Sr2Cu2O6+� �Bi-2201�. The mean distance be-
tween copper planes is d=12.3 Å, and the lattice spacing in
the planes is a0=5.36 Å. From recent optical
measurements,39 one can extract the effective mass of carri-
ers as meff��3−4�me in the underdoped regime. The dielec-
tric constant along the c axis is40 �z=18.9. We are not aware
of direct measurements of �x, but usually, the anisotropy is
relatively modest,41 e.g., �=�x /�z=0.99 in Nd2CuO4 or 0.7
in Pr2CuO4. Neglecting the anisotropy we can use �=�z and
the effective mass to estimate the Bohr radius in Bi-2201 as
a�ax�az�3 Å. We can compare this to an alternative es-
timate obtained as follows: we assume that the SI transition
of uncompensated materials is essentially a Mott transition
of doped carriers, which is known to occur roughly when42

�nud�a2=c with43 c�0.04. Using an approximate value for
nud�0.06a0

−2 we find a�4.4 Å, in rough agreement with
the above calculation based on the effective mass. This ma-
terial thus certainly corresponds to widely spaced layers, d
�a. The estimated Bohr radius a is of the same order as the
typical pair size � in strongly underdoped samples. Require-
ment �50� for observing the SI transition in the BEC regime
is thus just marginally satisfied in this standard cuprate com-
pound.

More favorable conditions for the crossover to the BEC
limit may be expected in materials with high dielectric con-
stants �such as in La2−xSrxCuO4�, which increases the Bohr
radius. A similar tendency can be expected from a small
effective mass �small band mass and/or small mass renormal-
ization�, provided it does not occur simultaneously with an
increase in the pair size �.
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The application of our theory to certain particular super-
conductors may require further adjustments of the model.
For example, in Y1−zLaz�Ba1−xLax�2Cu3Oy acceptors are di-
valent and we have to define proper variables for the phase
diagram. We can use NA= �y−6� /vuc for the concentration of
divalent oxygen acceptors �excessive oxygen�, ND=x /vuc for
the concentration of monovalent donors, and n=2NA−ND for
the concentration of holes. Here vuc is the volume of the unit
cell. It is easy to show that the concentration N=4NA+ND
plays the role of the effective concentration of monovalent
charged impurities. Indeed, for randomly distributed impuri-
ties in a given volume R3, the variances of the donor, accep-
tor, and net charge number distribution are equal to NAR3,
NDR3, and �p2NA+ND�R3, respectively, where p represents
the valence of the acceptor. So the effective concentration of
monovalent charged impurities is not N=NA+ND but N
= p2NA+ND. For excess oxygen atoms one has p=2, and the
coefficient 4 in the expression for N reflects the enhanced
role of divalent charge in the creation of potential fluctua-
tions.

There is a further complication for YBCO, in that a frac-
tion of holes does not reside in CuO planes but in CuO
chains. This should be taken into account when comparing
our theory with YBCO data. However, most other high Tc
layered superconductors do not suffer from such a complica-
tion.

IV. CONCLUSION

In conclusion we have established the phase diagram for
the superconductor-insulator transition in heavily doped
strongly compensated semiconductors endowed with a
strong superconductive coupling mechanism. The phase tran-
sition line at large impurity and carrier density coincides es-
sentially with the well-known metal-insulator transition in
doped semiconductors. However, if Cooper pairs are tightly
bound, such that ��a, there is a low density �BEC� regime
where preformed pairs are dilute even at the SI transition. In
this regime we have established two segments of the SI tran-
sition line which reflect that a gas of compact bosons is more
compressible than an equally dense gas of weakly interacting
fermions.

Recently, an interesting system exhibiting a direct SI tran-
sition upon doping has been discovered in the form of boron-
doped diamond.44 The latter can be simultaneously doped by
both donors and acceptors and thus constitutes a promising
system in which one might observe the effects we predict for
the isotropic 3d case. It would also be interesting to test our
predictions numerically, e.g., following the lines of recent
work which investigated the interplay of superconductivity
and localization in strong disorder.45

We have extended considerations from the isotropic case
to layered systems such as the cuprates. In this case, we have
found equations for the SI line which can be verified experi-
mentally. We showed that due to the smaller phase space for
bosons in the plane, the crossover to the BEC regime mani-
fests itself on the phase transition line only by an additional
logarithmic factor. Except for the logarithmic factors, our
results also apply to the metal-insulator transition in layered
strongly doped fermion systems.

Apart from determining the phase transition line, we have
established the properties of the insulating phase. We assert
that in the presence of strong superconducting couplings all
fermions are paired, and hence at lowest temperatures, trans-
port is due to the variable range hopping of Cooper pairs.
This kind of transport may be observable in compensated
diamond and high Tc materials.
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APPENDIX: SMALL PAIRS IN BIPOLARON SYSTEMS

Fröhlich polarons are quasiparticles arising in systems
with strong electron phonon coupling. An extensive study of
polarons is given in Ref. 46, based on Feynman’s path inte-
gral approach, giving accurate results in dimensions d=2,3.
If the coupling strength is large enough polarons can bind
into strongly bound pairs which finally undergo a SI transi-
tion if they are dense enough.

An essential ingredient for strong coupling is a signifi-
cantly small ratio between the electronic dielectric constant
�el and the static one ���el,

� �
�el

�
. �A1�

Note that the static dielectric constant is the one which enters
the screening problems discussed in the main text.

The electron-phonon coupling is characterized by the cou-
pling constant,

� =
e2

2��LO
�2m�LO

�
�1/2� 1

�el
−

1

�
� �A2�

�
e2

2��LO
�2m�LO

�
�1/2 1

�el
=

�

a�

. �A3�

Here, m is the band mass and �LO is the long wavelength
optical phonon frequency. In the last step it was assumed that
��1. Further,

a� =
�2�el

me2 � a �A4�

is an “effective Bohr radius” built from the electronic dielec-
tric constant. However, the Bohr radius which appears in the
theory presented in the main text is given by

a =
�2�

mpole
2 , �A5�

where mpol�m is the polaron mass. At large coupling, one
finds47 mpol /m��. Note that a can be much larger than a� if
���1.
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At strong coupling polarons can bind into pairs, so-called
bipolarons. The bipolaron radius is usually only 10%–20%
larger46 than the radius of a single polaron, which is given by

� = � �

m�LO
�1/2

= �a�. �A6�

These pairs are stable if the coupling is sufficiently strong
����c� and if the ratio � is sufficiently small. The critical
values have been computed46 to be �c=2.9 �2D� and 6.8
�3D�.

For not too strong couplings ���c the maximal admis-
sible ratio of dielectric constants which allows for bipolaron
formation was found to be �for both 2d and 3d�

�c =
�� − 1��� − �c�
��� − �c� + �c

, �A7�

with ��1.63 /�2�1.15. Note that �c→0 as �→�c.
We are eventually interested in the possibility of small

pairs with ��a. Note that even though a large coupling �
implies ��a�, a small ratio ��1 still allows one to have

�

a
= ��

mpol

m
� �2� � 1. �A8�

This is precisely what is needed to observe the BEC part of
the SI transition line.

At very strong coupling, larger conglomerates of polarons
can form stable bound states. The formation of such multi-
polarons has not been studied systematically yet, apart from
an analysis at asymptotically strong coupling.48 For multipo-
larons to exist, the coupling needs to be considerably stron-
ger, ���c. At a given large �, the most stable bound state
will depend on the ratio of dielectric constants, �. The
smaller �, the more polarons can bind together. For example,
at asymptotically strong coupling one finds bipolarons for
0.046=�c

�3�����c
�2�=0.079 and larger multipolarons for �

���3�.
Multipolarons containing an even number of polarons will

be compact bosons, which eventually undergo a Bose-
Einstein condensation in sufficiently weak disorder. Up to
numerical prefactors, the SI transition for such multipolarons
would be of the same nature as the one discussed in the main
text for bosons formed by pairs of carriers.
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